

Fundamentals of Accelerator 2012 Day 3

William A. Barletta

Director, US Particle Accelerator School Dept. of Physics, MIT Economics Faculty, University of Ljubljana

Lumped circuit analogy of resonant cavity

University of Ljubljana

FACULTY OF

$$Z(\omega) = \left[j\omega C + (j\omega L + R)^{-1}\right]^{-1}$$

$$Z(\omega) = \frac{1}{j\omega C + (j\omega L + R)^{-1}} = \frac{(j\omega L + R)}{(j\omega L + R)j\omega C + 1} = \frac{(j\omega L + R)}{(1 - \omega^2 LC) + j\omega RC}$$

The resonant frequency is
$$\omega_{o} = \frac{1}{\sqrt{LC}}$$

Q of the lumped circuit analogy

Converting the denominator of Z to a real number we see that

$$\left| Z(\omega) \right| \sim \left[\left(1 - \frac{\omega^2}{\omega_o^2} \right)^2 + (\omega RC)^2 \right]^{-1}$$

1467 More basics from circuits - Q

 $Q = \frac{\omega_o \circ Energy \ stored}{Time \ average \ power \ loss} = \frac{2\pi \circ Energy \ stored}{Energy \ per \ cycle}$

$$\mathscr{T} = \frac{1}{2} L I_o I_o^* \quad \text{and} \langle \mathscr{P} \rangle = \langle i^2(t) \rangle R = \frac{1}{2} I_o I_o^* R_{surface}$$

$$\therefore Q = \frac{\sqrt{L/C}}{R} = \left(\frac{\Delta\omega}{\omega_o}\right)^{-1}$$

Translate circuit model to a cavity model: Directly driven, re-entrant RF cavity

University of Ljubljand

CONOMIC:

Properties of the RF pillbox cavity

 $\sigma_{walls} = \infty$

b

• We want lowest mode: with only $\mathbf{E}_{z} \& \mathbf{B}_{\theta}$

University of Ljubljana

FACULTY OF

Maxwell's equations are:

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\theta}) = \frac{1}{c^2}\frac{\partial}{\partial t}E_z \quad \text{and} \quad \frac{\partial}{\partial r}E_z = \frac{\partial}{\partial t}B_{\theta}$$

Take derivatives

==>

$$\frac{\partial}{\partial t} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(rB_{\theta} \right) \right] = \frac{\partial}{\partial t} \left[\frac{\partial B_{\theta}}{\partial r} + \frac{B_{\theta}}{r} \right] = \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2}$$

$$\frac{\partial}{\partial r}\frac{\partial E_z}{\partial r} = \frac{\partial}{\partial r}\frac{\partial B_{\theta}}{\partial t}$$

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} = \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2}$$

For a mode with frequency ω

University of Ljubljand

FACULTY OF

★ Therefore, $E''_{z} + \frac{E'_{z}}{r} + \left(\frac{\omega}{c}\right)^{2} E_{z} = 0$ > (Bessel's equation, 0 order)

✤ Hence,

**

$$E_z(r) = E_o J_o\left(\frac{\omega}{c}r\right)$$

• For conducting walls, $E_z(R) = 0$, therefore

$$\frac{2\pi f}{c}b = 2.405$$

E-fields & equivalent circuits for T₀₂₀ modes

University of Ljubljana FACULTY OF ECONOMICS

E-fields & equivalent circuits for T_{ono} modes

T_{0n0} has n coupled, resonant circuits; each L & C reduced by 1/n University of Ljubljana FACULTY OF ECONOMICS

Simple consequences of pillbox model

- ✤ Increasing R lowers frequency
 => Stored Energy, $C ~ ω^{-2}$
- Beam loading lowers E_z for the next bunch
- Lowering ω lowers the fractional beam loading
- Raising ω lowers $Q \sim \omega^{-1/2}$
- * If time between beam pulses, $T_s \sim Q/\omega$ almost all \mathcal{E} is lost in the walls

The beam tube makes field modes (& cell design) more complicated

- ✤ Peak E no longer on axis
 - $E_{pk} \sim 2 3 \times E_{acc}$ $FOM = E_{pk}/E_{acc}$
- * ω_o more sensitive to cavity dimensions
 - Mechanical tuning & detuning

University of Ljublja

CONOMIC

- Beam tubes add length & €'s w/o acceleration
- Beam induced voltages $\sim a^{-3}$
 - Instabilities

Cavity figures of merit

Figure of Merit: Accelerating voltage

The voltage varies during time that bunch takes to cross gap

University of Ljubljan

ACULTY O CONOMIC

 \succ reduction of the peak voltage by Γ (transt time factor)

Figure of merit from circuits - Q

$$Q = \frac{\omega_o \circ Energy \ stored}{Time \ average \ power \ loss} = \frac{2\pi \circ Energy \ stored}{Energy \ lost \ per \ cycle}$$

$$\mathscr{O} = \frac{\mu_o}{2} \int_{v} |H|^2 dv = \frac{1}{2} L I_o I_o^*$$
$$\langle \mathscr{O} \rangle = \frac{R_{surf}}{2} \int |H|^2 ds = \frac{1}{2} I_o I_o^* R_{surf}$$

$$R_{surf} = \frac{1}{Conductivity \circ Skin \ depth} \sim \omega^{1/2}$$

$$\therefore Q = \frac{\sqrt{L/C}}{R_{surf}} = \left(\frac{\Delta\omega}{\omega_o}\right)^{-1}$$

Measuring the energy stored in the cavity allows us to measure Q

✤ We have computed the field in the fundamental mode

$$U = \int_{0}^{d} dz \int_{0}^{b} dr 2\pi r \left(\frac{\varepsilon E_{o}^{2}}{2}\right) J_{1}^{2}(2.405r/b)$$
$$= b^{2} d \left(\varepsilon E_{o}^{2}/2\right) J_{1}^{2}(2.405)$$

- To measure Q we excite the cavity and measure the E field as a function of time
- Energy lost per half cycle = $U\pi Q$
- Note: energy can be stored in the higher order modes that deflect the beam

Keeping energy out of higher order modes

University of Ljubljand

FACULTY OF

Choose cavity dimensions to stay far from crossovers

Figure of merit for accelerating cavity: Power to produce the accelerating field

Resistive input (shunt) impedance at ω_o relates power dissipated in walls to accelerating voltage

$$R_{in} = \frac{\langle V^2(t) \rangle}{\mathscr{P}} = \frac{V_o^2}{2\mathscr{P}} = Q_v \sqrt{L/C}$$

Linac literature commonly defines "shunt impedance" without the "2"

$$\mathcal{R}_{in} = \frac{V_o^2}{\mathcal{P}} \sim \frac{1}{R_{surf}}$$

Typical values 25 - 50 $M\Omega$

Computing shunt impedance

 $\mathcal{R}_{in} = \frac{V_o^2}{\mathcal{P}}$ $\langle \mathcal{P} \rangle = \frac{R_{surf}}{2} \int_{s} |H|^2 ds$

$$R_{surf} = \frac{\mu\omega}{2\sigma_{dc}} = \pi Z_o \frac{\delta_{skin}}{\lambda_{rf}} \text{ where } Z_o = \sqrt{\frac{\mu_o}{\varepsilon_o}} = 377\Omega$$

The on-axis field E and surface H are generally computed with a computer code such as SUPERFISH for a complicated cavity shape

To make a linac Use a series of pillbox cavities

University of Ljubljana

FACULTY OF

Power the cavities so that $E_z(z,t) = E_z(z)e^{i\omega t}$

Make H-field region hearly spherical; raises Q & minim
 P for given stored energy

Thus, linacs can be considered to be an array of distorted pillbox cavities...

In warm linacs "nose cones" optimize the voltage per cell with respect to resistive dissipation

Q =

University of Ljubljan

CONOMIC

Usually cells are feed in groups not individually.... and

Linacs cells are linked to minimize cost

==> coupled oscillators ==>multiple modes

9-cavity TESLA cell

Example of 3 coupled cavities

 $x_0 \left(1 - \frac{\omega_0^2}{\Omega^2} \right) + x_1 k = 0 \qquad \text{oscillator } n = 0$ $x_1 \left(1 - \frac{\omega_0^2}{\Omega^2} \right) + (x_0 + x_2) \frac{k}{2} = 0 \qquad \text{oscillator } n = 1$

$$x_2\left(1-\frac{\omega_0^2}{\Omega^2}\right)+x_1k=0$$
 oscillator $n=2$

 $x_j = i_j \sqrt{2L_o}$ and Ω = normal mode frequency

Write the coupled circuit equations in matrix form

$$\mathbf{L}\mathbf{x}_{q} = \frac{1}{\boldsymbol{\Omega}_{q}^{2}}\mathbf{x}_{q} \quad \text{where} \quad \mathbf{L} = \begin{pmatrix} 1/\omega_{o}^{2} & k/\omega_{o}^{2} & 0\\ k/2\omega_{o}^{2} & 1/\omega_{o}^{2} & k/2\omega_{o}^{2}\\ 0 & k/\omega_{o}^{2} & 1/\omega_{o}^{2} \end{pmatrix} \quad \text{and} \quad \mathbf{x}_{q} = \begin{pmatrix} x_{1}\\ x_{2}\\ x_{3} \end{pmatrix}$$

Compute eigenvalues & eigenvectors to find the three normal modes

Mode q = 0: zero mode
$$\Omega_0 = \frac{\omega_o}{\sqrt{1+k}}$$
 $\mathbf{x}_0 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$
Mode q = 1: $\pi/2$ mode $\Omega_1 = \omega_o$ $\mathbf{x}_1 = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$
Mode q = 2: π mode $\Omega_2 = \frac{\omega_o}{\sqrt{1-k}}$ $\mathbf{x}_2 = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$

For a structure with N coupled cavities

- ➢ N normal modes, N frequencies
- From the equivalent circuit with magnetic coupling

University of Ljubljan

CONOMIC

where B = bandwidth (frequency difference between lowest & high frequency mode)

• Typically accelerators run in the π -mode

Magnetically coupled pillbox cavities

5-cell π -mode cell with magnetic coupling

The tuners change the frequencies by perturbing wall currents ==> changes the inductance ==> changes the energy stored in the magnetic field

TUNERS

$$\frac{\Delta\omega_o}{\omega_o} = \frac{\Delta U}{U}$$

Dispersion diagram for 5-cell structure

University of Ljubljana FACULTY OF ECONOMICS

Schematic of energy flow in a standing wave structure

University of Ljubljana FACULTY OF ECONOMICS

What makes SC RF attractive?

Comparison of SC and NC RF

Superconducting RF

- High gradient
 => 1 GHz, meticulous care
- ♦ Mid-frequencies
 ==> Large stored energy, €
- ★ Large \mathscr{C}_s ==> very small ΔE/E
- Large Q=> high efficiency

Normal Conductivity RF

- High gradient
 => high frequency (5 17 GHz)
- High frequency
 => low stored energy
- Low \mathscr{C}_{s} ==> ~10x larger $\Delta E/E$
- Low Q
 ==> reduced efficiency

Recall the circuit analog

University of Ljubljana

FACULTY OF ECONOMICS

As
$$R_{surf} = > 0$$
, the Q = $> \infty$.

In practice,

$$Q_{\rm nc} \sim 10^4$$
 $Q_{\rm sc} \sim 10^{11}$

Figure of merit for accelerating cavity: power to produce the accelerating field

Resistive input (shunt) impedance at ω_0 relates power dissipated in walls to accelerating voltage

$$R_{in} = \frac{\langle V^2(t) \rangle}{\mathscr{P}} = \frac{V_o^2}{2\mathscr{P}} = Q_v \sqrt{L/C}$$

Linac literature more commonly defines "shunt impedance" without the "2"

$$\mathcal{R}_{in} = \frac{V_o^2}{\mathcal{P}} \sim \frac{1}{R_{surf}}$$

For SC-rf *P* is reduced by orders of magnitude **BUT, it is deposited** *@* **2K**

Surfing analogy of the traveling wave acceleration mechanism

To "catch" the wave the surfer must be synchronous with the phase velocity of the wave

Typically we need a longitudinal E-field to accelerate particles in vacuum

- Example: the standing wave structure in a pillbox cavity
- What about traveling waves?
 - > Waves guided by perfectly conducting walls can have E_{long}

- ✤ But first, think back to phase stability
 - To get continual acceleration the wave & the particle must stay in phase
 - > Therefore, we can accelerate a charge with a wave with a synchronous phase velocity, $v_{ph} \approx v_{particle} < c$

Can the accelerating structure be a simple (smooth) waveguide?

University of Ljubljan

ACULTY O

CONOMIC

- Then $\mathbf{E} = \mathbf{E}(r, \theta) e^{i(\omega t kz)}$ with $\omega/k = v_{ph} < c$
- ♦ Transform to the frame co-moving at $v_{ph} < c$
- Then,
 - The structure is unchanged (by hypothesis)
 - > E is static (v_{ph} is zero in this frame)
 - ==> By Maxwell's equations, H =0
 - $\Longrightarrow \nabla \circ \mathbf{E} = 0$ and $\mathbf{E} = -\nabla \phi$
 - > But ϕ is constant at the walls (metallic boundary conditions) ==> $\mathbf{E} = 0$

The assumption is false, smooth structures have $v_{ph} > c$

Similar for TM01 mode in the waveguide

Ultra-relativistic particles (v ≈ c) can "surf" an rf field traveling at c

University of Ljubljana FACULTY OF

RF-cavities in metal and in plasma Think back to the string of pillboxes

Courtesy of W. Mori & L. da Silva

$$G \sim 30 MeV/m$$

RF cavity

1 m

 $G \sim 30 \ GeV/m$

End of unit